Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Biomed Inform ; 117: 103777, 2021 05.
Article in English | MEDLINE | ID: covidwho-1171479

ABSTRACT

From the start of the coronavirus disease 2019 (COVID-19) pandemic, researchers have looked to electronic health record (EHR) data as a way to study possible risk factors and outcomes. To ensure the validity and accuracy of research using these data, investigators need to be confident that the phenotypes they construct are reliable and accurate, reflecting the healthcare settings from which they are ascertained. We developed a COVID-19 registry at a single academic medical center and used data from March 1 to June 5, 2020 to assess differences in population-level characteristics in pandemic and non-pandemic years respectively. Median EHR length, previously shown to impact phenotype performance in type 2 diabetes, was significantly shorter in the SARS-CoV-2 positive group relative to a 2019 influenza tested group (median 3.1 years vs 8.7; Wilcoxon rank sum P = 1.3e-52). Using three phenotyping methods of increasing complexity (billing codes alone and domain-specific algorithms provided by an EHR vendor and clinical experts), common medical comorbidities were abstracted from COVID-19 EHRs, defined by the presence of a positive laboratory test (positive predictive value 100%, recall 93%). After combining performance data across phenotyping methods, we observed significantly lower false negative rates for those records billed for a comprehensive care visit (p = 4e-11) and those with complete demographics data recorded (p = 7e-5). In an early COVID-19 cohort, we found that phenotyping performance of nine common comorbidities was influenced by median EHR length, consistent with previous studies, as well as by data density, which can be measured using portable metrics including CPT codes. Here we present those challenges and potential solutions to creating deeply phenotyped, acute COVID-19 cohorts.


Subject(s)
COVID-19/diagnosis , Electronic Health Records , Phenotype , Comorbidity , Diabetes Mellitus, Type 2 , Global Health , Humans , Influenza, Human , Likelihood Functions , Pandemics
2.
Appl Clin Inform ; 12(1): 170-178, 2021 01.
Article in English | MEDLINE | ID: covidwho-1127207

ABSTRACT

OBJECTIVE: This study examines the validity of optical mark recognition, a novel user interface, and crowdsourced data validation to rapidly digitize and extract data from paper COVID-19 assessment forms at a large medical center. METHODS: An optical mark recognition/optical character recognition (OMR/OCR) system was developed to identify fields that were selected on 2,814 paper assessment forms, each with 141 fields which were used to assess potential COVID-19 infections. A novel user interface (UI) displayed mirrored forms showing the scanned assessment forms with OMR results superimposed on the left and an editable web form on the right to improve ease of data validation. Crowdsourced participants validated the results of the OMR system. Overall error rate and time taken to validate were calculated. A subset of forms was validated by multiple participants to calculate agreement between participants. RESULTS: The OMR/OCR tools correctly extracted data from scanned forms fields with an average accuracy of 70% and median accuracy of 78% when the OMR/OCR results were compared with the results from crowd validation. Scanned forms were crowd-validated at a mean rate of 157 seconds per document and a volume of approximately 108 documents per day. A randomly selected subset of documents was reviewed by multiple participants, producing an interobserver agreement of 97% for documents when narrative-text fields were included and 98% when only Boolean and multiple-choice fields were considered. CONCLUSION: Due to the COVID-19 pandemic, it may be challenging for health care workers wearing personal protective equipment to interact with electronic health records. The combination of OMR/OCR technology, a novel UI, and crowdsourcing data-validation processes allowed for the efficient extraction of a large volume of paper medical documents produced during the COVID-19 pandemic.


Subject(s)
COVID-19/diagnosis , Health Information Exchange , Information Storage and Retrieval , Crowdsourcing , Humans , Physicians , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL